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LETTER TO THE EDITOR 

A selfdual point for triangular Ashkin-Teller models 

I G Enting 
Physics Department, King’s College, Strand, London WC2R 2LS, UK 

Received 7 November 1974 

Abstract. It is shown that there is a unique point at which high temperature expressions for 
a special class of Ashkin-Teller models on the triangular lattice transform into low tempera- 
ture expressions for the same models. It is suggested that this point is the critical point. 

The Ashkin-Teller model that we consider is equivalent to two parallel Ising lattices 
with spin variables ai, Si = f 1 and interactions -Jaiaj, - J S i S j .  They are coupled 
by a four-spin interaction -J4aiajSiSj. The original model (Ashkin and Teller 1943) 
allowed different interactions in each subsystem, in which case Wu and Lin (1974) have 
suggested there should be two phase transitions. We consider only the case of equal 
interactions in each layer. For the square lattice system Wegner (1972) has shown that 
the critical temperature is equal to that of the eight-vertex model of the same J ,  J ,  values. 
In the eight-vertex model the two square sublattices are staggered rather than having 
their sites corresponding as in the Ashkin-Teller model. 

For the triangular lattice Ashkin-Teller model there are two special cases for which 
the critical point is known. J ,  = 0 is two independent Ising models or equivalently a 
four-state planar Potts model (Betts 1964, Suzuki 1967). J ,  = 1 is the standard Potts 
model whose critical point was found by Kim and Joseph (1974). 

To discuss transformations of the Ashkin-Teller model we treat it in its original 
form as a four-state system with states indexed 0 to 3 corresponding to (6,s) con- 
figurations (+, +), (+, -), (-, -), (-, +). (All indices take values 0 to 3.) 

The interaction energies are 

J.. J J  = 0 ( 1 )  
JO, = J , ,  = J 2 3  = J o 3  = 2J+2J4 (2) 
J,, = J , ,  = 45 (3) 

having chosen the fully aligned state to be the zero of energy. 
The possibility of a general high temperature expression is suggested by the result of 

Domb (1974) that it is possible to diagonalize the transfer matrix, V, for both the special 
cases J ,  = 0, J ,  = 1 using the same matrix, T, whose elements are 

j ,  k = 0, 3, i = J - 1  (4) 

Lo = 1+2x+y ( 5 )  
A I  = A 3  = 1-y (6) 

T. = Ljjk 
Jk 2 

and in fact T does diagonalize the transfer matrix for the general case, the eigenvalues 
being 
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1, = 1-2x+y (7) 

x = exp - 2p(J + J4) (8) 

y = exp -4pJ. (9) 
For the three-state Potts model, Mittag and Stephen (1971) give a graphical expansion 
for the partition function. The appropriate generalization oftheir vertex rules is suggested 
by the work of Domb (1974, equations (44), (45)). 

To construct a high temperature expression for the partition function we assign an 
arbitrary direction to each bond and for each bond from a site in state j to a site in state 
k, we include in the partition function a term qk in the form X,,, ?,,,&Tmk. The directions 
are arbitrary and merely reflect the fact that we have introduced a direction dependence 
into the formalism by making a choice between TATand FAT to express V .  

At any particular site in state j we have 

and summing over all configurations of the site, ie over all four values of j ,  gives zero 
unless 

n-  1 n’ = 0 (modulo 4) 
1 2 

where E l n  is a sum over n values for all the ‘out’ bonds and E2n‘ is a sum over all the 
‘in’ bonds. z is the coordination number. The high temperature expansion thus takes 
the form (for N sites) 

(12) 
where G is a sum over all configurations of types of bonds on the lattice that satisfy ( 1  1 )  
and have bonds of type j contributing lj/,l,,. 

We now relate the G functions for honeycomb (hc) and triangular (tri) lattices. 
We consider a site a on the honeycomb lattice with its three neighbours b, c, d and relate 
all allowed configurations to configurations on the triangle bcd. To preserve the 
relationship of these sites to the rest of the lattice we must equate terms that have the 
same set of ‘currents’ (a, p, y )  into sites b, c, d from outside the sites a, b, c. d. 

Z = 1.~”22-”’4”G(1, l.l/io, I . , / i , ,  lb3/Ao) 

currents hc contributions sum of tri contribution 

We can put 

Gh,(l,u, w,u)  = ( 1  +2r3+~3)-MGlri ( l ,  r,  u , r )  

where M is the number of triangular lattice sites. 

u 2  = (r + r 2  + + U2r)/(i + 2r3 + 2u3) 

w2 = (U + U’ + 2r3)/( 1 + 2r3 + 2u3) 
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and for consistency we require 

(r2 + 2ur + r ’ ~ ) ~ ( 1  +2r3 + u3) = ( I +  r2 + r2u + ru2l2(u + U’ + 2r3). (16) 

The existence of a high temperature to low temperature duality transformation is 
known for the two special cases J ,  = 0, J ,  = 1 and Wegner (1973) has shown that 
constraints such as ( 1 1 )  can be regarded as the generators of such transformations. 
The work of Mittag and Stephen (1971) (see especially figure 2) suggests how such a 
transformation may be constructed in a graphical form. Going from a low temperature 
configuration to a high temperature configuration the exponentials of the energies (l), 
(2) and (3) map onto 1, Al/Ao or A3/& and &/Ao. The arrows are needed only to decide 
between A, and 2,. We order the states 0, 1,2, 3, 0, 1, 2 essentially as done by Mittag 
and Stephen and use A,/& if the Mittag and Stephen convention gives an arrow parallel 
to our original bond arrow, and use 23/10 otherwise. (This topological form of the 
duality transformation was considered by Kihara et a1 (1954).) 

We have 

Ztrj(X, Y )  = Ghc(1 ,  X, Y, XI* (17) 
To combine equations (12), (13) and (17) to find a self-dual point for the triangular lattice 
we must first satisfy equation (16). We then have to have low temperature variables 
transforming into high temperature variables r = Al /Ao ,  U = A2/Ao,  so that 

l-U r +  r2  + r2u + ru2 
1+2r+u 1+2r3+U3 

1-2r+u u+u2+2r3 
” = ( 1  +2r+u) = 1 +2r3+u3’ (19) 

For any particular model we fix J J J  so that there is only one independent variable 
J / k T .  While equations (18), (19) can give a transformation of a high temperature 
Ashkin-Teller system into a low temperature Ashkin-Teller system, the equations can 
only represent a transformation of a system into itself if they can both be satisfied 
simultaneously. 

Assuming for the moment that a solution exists we have 

Z J ~ ,  y) = (1  +2r3 + U 3 ) - ~ ~ g ~ / 2 2 4 ~ ~  tr, .( r,  U). (20) 

(1+u+243 = 4 ( 1 + 2 ~ 3 + ~ 3 )  (21) 

For a self-dual point we must equate the initial factors to 1. This reduces to 

so for a self-dual point we must satisfy equations (16), (18), (19) and (21) simultaneously, 
remembering that for fixed J J J ,  any one of the four equations will determine T (except 
that equation (16) is true for all T if J ,  = 0). 

In fact they can all be satisfied and so there is a self-dual point for which the simplest 
equation is the reduced form of equation (21). 

4r’+2(1+~)r- ( l -u)~  = 0 (22) 

r = (1  -y)/(1+2x+y) (23) 
U = (1-2x+y)/(l+2x+y) 

1-y-2x2 = 0. 
whence 
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The solutions of equation (22) include the two known solutions. The remaining possible 
check is to calculate dT,/dJ, at J, = 0 both from equation (22) and from the per- 
turbation approach of Kadanoff and Wegner (1971). 

Both methods agree, giving 

Since we have a solution that gives the critical point in all known cases it seems probable 
that it is the critical point in the general case. For the J, = 1 case Kim and Joseph were 
able to include an auxiliary interaction so that the star triangle transformation remained 
valid. In the present case we would need a more complicated interaction and would 
still have to contend with the fact that away from the self-dual point the transformation 
would change the J,/J ratio and so we would have a transformation connecting different 
models rather than connecting high and low temperature regions of one model. 

The support of the Science Research Council is gratefully acknowledged. 
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